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Face-to-face stacking of conjugated oligomers and polymers is A ST HOCH,CH,0H g~y
a key characteristic of organic semiconducting materials. Studies = o _PTSA = Oj
of conjugated oligomers afford insight into the electronic properties < benze"e = °
of conjugated polymers and provide materials with potential for 1 2

use in devices (e.g., FETs and LEBS)}However, characterization
of linear oligomers in solution does not necessarily address the B
influence of intermolecular interactions on the electronic structure
of conjugated systems in thin film devices. Observation of the
reversible formation ofr-dimers of radical cations of oligoth-
iophenes in solution led to the suggestion that analogous spinless
interchain radical catiom-dimers may be responsible for charge

transport in conjugated polymets® While the effect of molecular ¢ , .
structure on the formation of-dimers has been explored undera m=0 Th ; \HsC/ \CHa/ . stqthy, "€ ot
variety of conditions, details of the structure of these aggregates m=1 mz Hsc@mc'*a zfgﬂﬁz

have not been firmly established. HaC >FCH,

Computational studies provide some insight into the evolution Figure 1. (A) Ketalization of bisthieno-fused bicyclo[4.4.1]Jundecanone.

of electronic structure upon proceeding from a single one- (g) x ray crystal structure of. (C) Model dimethyl-substituted linear
dimensional conjugated chain to a 3D solid-state material. These oligomers, Th, and stacked oligomerst[Thy]2.

studies examine the electronic structure of the neutral, cationic (i.e.,
radical cations), and dicationic forms of isolated oligomers, cofacial
dimers, and stacks® However, there remains a paucity of
experimental molecular models to validate these computational
approaches. A recent report on the electronic structure of quin-
guethiophenophanes was restricted to variation of the length of the
bridging units between the termini of quinquethiophene dfitiere

we explore the influence of interchain interactions on the properties T )

. e . . 04 06 08 10 12 14 16
of a series of oligothiophenes held in a cofacial arrangement by a E/V (versus AgiAg)

blcyclo[4.4.l]undgcane coFést—[Thn]z (Flgure 1C). Examination Figure 2. Differential pulse voltammograms (DPV) sf[Thg]. (solid line)
of the stacked oligomers and linear (i.e., unstacked) models by and Th (dots).
voltammetry and absorption spectroscopy establishes the stabiliza-
tion of mono- and bis(radical cation)s by interaction of the
conjugated oligomeric tiers.

Bisthieno-fused bicyclo[4.4.1]lundecanotiewas prepared by
alkylation of dimethyl 1,3-acetonedicarboxylate with 3,4-bis-

(bromomethyl)thiophene followed by saponification and thermal whereas the first oxidation to form the mono(radical cation) is

P o .
dgcarboxylatloﬁ. Ketallzat!on V.V'th ethyleng egpoI IO.C ks the facilitated by stacking, removal of the second electron is impeded
bicycloalkane into a chairchair conformation in which the ! - L
. . . . by Coulombic repulsion between the charged aromatic tiers.
thiophene rings are stacked atop one another. This results in an™” . N .
Similarly, oxidation of the stacked terthiophene undergoes

upfield shift in thelH NMR signals of thea-thienyl protons ¢ T - i X
7.00 for ketonel; o 6.51 for ketal2) and appearance of a pair of significant splitting upon stacking: Elundergoes a reversible1e
oxidation at +0.96 V, whereasst[Ths], undergoes two Ie

sharp doublets of doublets for the benzylic protons. The X-ray “* - ) _
crystal structure of confirms that the thiophene units are held in  ©Xidationsoth of which are alower potentials than the unstacked

a stacked orientation with a centroid-to-centroid distance of 359 @nalogue £0.70 and+0.90 V; Figure 2). This splitting and
pm, comparable to commonstacking distances observed in solid lowering of the oxidation potential is also observed for the stacked
polyarenes (the SS distance is 429 pm, with an angle of°28  quinquethiophenst[Ths], (Figure 3), which in contrast to Otsubo’s
between the thiophene rings). Installation of conjugated arms on Observation that the first oxidation peak of quinquethiophenophanes
the bisthieno-fused bicyclo[4.4.1Jundecanone core is straightfor- is not split. The fact that the two Ieoxidations of the stacked
ward. Tetrabromination of ketong followed by Stille coupling analogue take place at lower potentials than the dxédation of

Stacking has a dramatic effect on the redox properties of
oligothiophenes. Tetramethylthiophene g, Téxhibits an irreversible
oxidation at+1.39 V, while the stacked analogust[Thy],®
undergoes two separate lexidations att-1.09 andt-1.59 V. Thus,

with an appropriate thienyl stannane (g#,,—SnBuw)*? followed the linear analogue suggests that both the mono(radical cation) and
by ketalization provides stacked analogues of terthiopheke ( dication are stabilized by the stacking interaction. In particular,
[Ths]z, m = 1) and quinquethiophena#[Ths],, m = 2). lowering of the second Teoxidation potential to form the dication
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Table 1. Spectral Characteristics of Linear Oligothiophene Radical

1697 w -8 Th,, 1st 1 € oxidation ! g IO
T -®- st[Thy],, 1st 1 & oxidation Cations and sz-Dimers, and Analogous Stacked Dications
< 1.4 —w— st{Thyl,, 2nd 1 € oxidation — -
2 cationic species Amadnm?@
2 127 Ths radical cation 563, 884
N radical cationr-dimer 460, 725
S 10 st[Thal2 dicatiorf 506, 778, 970 (CFH)
T s Ths radical catiop 731, 1322
w - radical cationz-dimer 620, 1085
0.6 T T T T . st[Ths]. dicatior? 654, 1123
2 3 4 5
number of thiophene rings, 7 a Generated by addition of Feto CH,Cl, solution of Th, or st[Thy]2
Figure 3. Plot of oxidation potentials of linear (Fhand stacked analogues  at room temperature; [analyte] 10~5 M. ® Formed upon cooling te-30
(st[Thp]2). °C in acetonitrile. Weak charge transfer band (ref 5).
splitting of the first two oxidations of the stacked oligomers gets
Ths* (st{Thel)** progressively smaller as the conjugation length increases, consistent

with the formation of a spinless charge carrier delocalized over a
number of chains in a p-doped polymer film. Arene-fused bicyclo-
[4.4.1]lundecanes provide a versatile scaffold to explore the effects
of m-stacking on the electronic structure of a variety of other
oligomers to provide models for a diverse set of conjugated
polymers. The stacked mono(radical cation)s and dications serve
as better models for polarons and bipolarons, respectively, than
linear unstacked oligomers.
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Figure 4. UV—vis—NIR spectra: dication a$t-[Ths], (solid line);zz-dimer
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